LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS

FIFTH SEMESTER - APRIL 2010

MT 5407 / 5404 - FORMAL LANGUAGES AND AUTOMATA

Date & Time: 29/04/2010 / 9:00 - 12:00 Dept. No. Max.: 100 Marks **SECTION A** Answer ALL the questions: $(10 \ge 2 = 20)$ 1. Define a context free grammar. 2. Define the union of two languages. 3. If $G = (\{S, A\}, \{a, b\}, S \rightarrow aAb, A \rightarrow aAb, A \rightarrow \varepsilon, S)$, find L(G). 4. Define homomorphism and ε - free homomorphism of a language. 5. Show that the grammar $G = (\{S\}, \{a\}, S \rightarrow SS, S \rightarrow a, S)$ is ambiguous. 6. Write any two characteristics of a derivation tree.

- 7. Define reduced grammar.
- 8. Define Greibach normal form.
- 9. What is a regular set?
- 10. Draw the state diagram for the deterministic automaton, $M = (K, I, \delta, q_0, F)$ where

 $K = \{q_0, q_1\}, I = \{a, b\}, F = \{q_1\}$ and δ is defined as follows:

δ	a	b
q ₀	<i>q</i> 1	q 0
q 1	q_0	q 1

SECTION B

Answer any **FIVE** questions:

11. Write short notes on Chomskian hierarchy.

(aⁿbⁿcⁿ **J**. Show that L(G) is accepted by the Context free grammar 12. Let L(G) =G = (N, T, P, S) where $N = \{S, B\}$, $T = \{a, b, c\}$, P consists of the following productions: $S \rightarrow aSB, S \rightarrow abc, bB \rightarrow bbc, cB \rightarrow Bc.$

- 13. Define Kleene closure of a language. Prove that the families of Phrase structure language, Context sensitive language, Context free language and Regular language are closed under star.
- 14. Prove that the families of Phrase structure language, Context sensitive language, Context free language and Regular language are closed under concatenation and union. $a^{n}b^{n}$
- ≥ 1 . Give an ambiguous and unambiguous grammar to generate L. n 15. Let L = 1
- 16. Let G = ({S, A, B}, {a, b}, P, S) where P consists of S \rightarrow AB, A \rightarrow BS | b, B \rightarrow SA | a. Find the rightmost derivation for the string abaa and also draw the corresponding generation tree.
- 17. Let L = $\left\{\frac{a^{n}b^{m}}{n} \neq m\right\}$ and G = (N, T, P, S) where N = {S, A, B}, T = {a, b} and $P = \{S \rightarrow aSb, S \rightarrow aA, A \rightarrow aA, A \rightarrow a, S \rightarrow a, S \rightarrow bB, B \rightarrow bB, B \rightarrow b, S \rightarrow b\}$

generates L. Write this grammar in Chomsky normal form.

 $(5 \times 8 = 40)$

18. Draw the state diagram for the deterministic finite automaton, $M = (K, I, \delta, q_0, F)$ where

 $K = \{q_0, q_1, q_2, q_3\}, I = \{a, b\}, F = \{q_11\} \}$ is defined as follows:

δ	а	b
q _o	91	q 2
q 1	q _s	q .
q ₂	q ₂	q 2
qa	92	92

Also check whether the following strings are accepted by the automaton (i) ababa (ii)aabba.

SECTION C

Answer any **TWO** questions:

- 19. (a) If G = (N, T, P, S) where N = {S, A,B}, T = {a,b}, and P consists of the following rules: $S \rightarrow aB, S \rightarrow bA, A \rightarrow a, A \rightarrow aS, A \rightarrow bAA, B \rightarrow b, B \rightarrow bS, B \rightarrow aBB.$ Then prove the following:
 - (1) $S \Rightarrow$ w iff w consists of an equal number of a's and b's
 - (2) $A \Rightarrow$ w iff w has one more a than it has b's.
 - (3) $B \Rightarrow$ w iff w has one more b than if has a's
 - (b) Write down a regular grammar to generate $L = (a, b)^*$ (15+5)
- 20. (a) Prove that the family of Context free language is closed under substitution and homomorphism.
 (b) Let G = (N, T, P,S) where N = {S, A}, T = {a, b}, P consists of the productions: S → aAb, S → abSb, S → a, A → bS, A → aAAb. Give the leftmost derivation of the string

abab and draw the corresponding generation tree. (15+5)

- 21. State and prove uvwxy theorem and illustrate it with an example.
- 22. (a) Define a non-deterministic finite automaton.

(b) Given a non-deterministic finite automaton which accepts L, show that there exists a deterministic finite automaton that accepts L.

(c) Draw the state diagram for the following non-deterministic finite state automaton, $M = (K, I, \delta, q_0, F)$ where $K = \{q_0, q_1, q_2, q_3\}, I = \{0, 1\}, F = \{q_13\}, \delta$ is defined as follows,

Ô	0	1
90	{ q _0, q _1 }	{ q 0. q 2}
q1	[{q] ₃ }	{ q ₀ , q ₁ }
q ₂	Φ	[{q] ;}
q _s	[{q] ₃ }	<u>[{q]</u> ;}

check whether the string 11001 is accepted by the non-deterministic finite automaton.

(3+10+7)

 $(2 \times 20 = 40)$
