LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2010
MT 5407 / 5404 - FORMAL LANGUAGES AND AUTOMATA
Date \& Time: 29/04/2010 / 9:00-12:00 Dept. No. \quad Max. : 100 Marks

SECTION A

Answer ALL the questions:
$(10 \times 2=20)$

1. Define a context free grammar.
2. Define the union of two languages.
3. If $G=(\{S, A\},\{a, b\}, S \rightarrow a A b, A \rightarrow a A b, A \rightarrow \varepsilon, S)$, find $L(G)$.
4. Define homomorphism and ε - free homomorphism of a language.
5. Show that the grammar $\mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}\}, \mathrm{S} \rightarrow \mathrm{SS}, \mathrm{S} \rightarrow \mathrm{a}, \mathrm{S})$ is ambiguous.
6. Write any two characteristics of a derivation tree.
7. Define reduced grammar.
8. Define Greibach normal form.
9. What is a regular set?
10. Draw the state diagram for the deterministic automaton, $\mathrm{M}=\left(\mathrm{K}, \mathrm{I}, \bar{\delta}, q_{0}, \mathrm{~F}\right)$ where $\mathrm{K}=\left\{q_{0}, q_{1}\right\}, \mathrm{I}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{F}=\left\{q_{1} 1\right\}$ and δ is defined as follows:

δ	a	b
q_{0}	q_{1}	q_{0}
q_{1}	q_{0}	q_{1}

SECTION B

Answer any FIVE questions:
$(5 \times 8=40)$
11. Write short notes on Chomskian hierarchy.
12. Let $L(G)=\left\{\frac{a^{n} b^{n} c^{n}}{n} \geq 1\right\}$. Show that $L(G)$ is accepted by the Context free grammar $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where $\mathrm{N}=\{\mathrm{S}, \mathrm{B}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{P}$ consists of the following productions:
$\mathrm{S} \rightarrow \mathrm{aSB}, \mathrm{S} \rightarrow \mathrm{abc}, \mathrm{bB} \rightarrow \mathrm{bbc}, \mathrm{cB} \rightarrow \mathrm{Bc}$.
13. Define Kleene closure of a language. Prove that the families of Phrase structure language, Context sensitive language, Context free language and Regular language are closed under star.
14. Prove that the families of Phrase structure language, Context sensitive language, Context free language and Regular language are closed under concatenation and union.
15. Let $\left.\mathrm{L}=\frac{a^{n} b^{n}}{n} \geq 1\right\}$. Give an ambiguous and unambiguous grammar to generate L .
16. Let $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})$ where P consists of $\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{BS}|\mathrm{b}, \mathrm{B} \rightarrow \mathrm{SA}| \mathrm{a}$. Find the rightmost derivation for the string abaa and also draw the corresponding generation tree.
17. Let $\mathrm{L}=\left\{\frac{a^{n} b^{m}}{n} \neq m\right\}$ and $G=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where $\mathrm{N}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSb}, \mathrm{S} \rightarrow \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{S} \rightarrow \mathrm{a}, \mathrm{S} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{S} \rightarrow \mathrm{b}\}$ generates L. Write this grammar in Chomsky normal form.
18. Draw the state diagram for the deterministic finite automaton, $\mathrm{M}=\left(\mathrm{K}, \mathrm{I}, \delta, q_{\mathrm{p}}, \mathrm{F}\right)$ where $\mathrm{K}=\left\{q_{0}, q_{1}, q_{2}, q_{\mathrm{a}}\right\}, \mathrm{I}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{F}=\left\{q_{1} \mathbf{1}\right\}, \hat{\delta}$ is defined as follows:

δ	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{3}	q_{0}
q_{2}	q_{2}	q_{2}
q_{3}	q_{2}	q_{2}

Also check whether the following strings are accepted by the automaton (i) ababa (ii)aabba.

SECTION C

Answer any TWO questions:
19. (a) If $G=(N, T, P, S)$ where $N=\{S, A, B\}, T=\{a, b\}$, and P consists of the following rules: $\mathrm{S} \rightarrow \mathrm{aB}, \mathrm{S} \rightarrow \mathrm{bA}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{A} \rightarrow \mathrm{aS}, \mathrm{A} \rightarrow \mathrm{bAA}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{B} \rightarrow \mathrm{bS}, \mathrm{B} \rightarrow \mathrm{aBB}$.
Then prove the following:
(1) $S \stackrel{\rightharpoonup}{\Rightarrow}$ w iff w consists of an equal number of a's and b's
(2) $A \stackrel{*}{\Rightarrow}$ w iff w has one more a than it has b's.
(3) B $\stackrel{*}{\Rightarrow}$ w iff w has one more b than if has a's
(b) Write down a regular grammar to generate $L=(a, b)^{*}$.
$(15+5)$
20. (a) Prove that the family of Context free language is closed under substitution and homomorphism.
(b) Let $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where $\mathrm{N}=\{\mathrm{S}, \mathrm{A}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}$ consists of the productions: $\mathrm{S} \rightarrow \mathrm{aAb}, \mathrm{S} \rightarrow \mathrm{abSb}, \mathrm{S} \rightarrow \mathrm{a}, \mathrm{A} \rightarrow \mathrm{bS}, \mathrm{A} \rightarrow \mathrm{aAAb}$. Give the leftmost derivation of the string $a b a b$ and draw the corresponding generation tree.
(15+5)
21. State and prove uvwxy theorem and illustrate it with an example.
22. (a) Define a non-deterministic finite automaton.
(b) Given a non-deterministic finite automaton which accepts L, show that there exists a deterministic finite automaton that accepts L.
(c) Draw the state diagram for the following non-deterministic finite state automaton, $\mathrm{M}=\left(\mathrm{K}, \mathrm{I}, \hat{o}, q_{0}, \mathrm{~F}\right)$ where $\mathrm{K}=\left\{q_{0}, q_{1}, q_{2}, q_{\mathbf{a}}\right\}, \mathrm{I}=\{0,1\}, \mathrm{F}=\left\{q_{1} \mathbf{3}\right\}, \hat{o}$ is defined as follows,

0	0	1
q_{0}	$\left\{q_{0} q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
q_{1}	$\left.\boxed{[q]}]_{3}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$q=$	Φ	$\triangle\left\{a \rrbracket_{3}\right\}$
q_{3}	【q]a	$\triangle\left\{\rrbracket_{3}\right\}$

check whether the string 11001 is accepted by the non-deterministic finite automaton.
$(3+10+7)$

